Extensions 1→N→G→Q→1 with N=C2 and Q=C23.12D6

Direct product G=N×Q with N=C2 and Q=C23.12D6
dρLabelID
C2×C23.12D696C2xC2^3.12D6192,1356


Non-split extensions G=N.Q with N=C2 and Q=C23.12D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.12D6) = C24.15D6central extension (φ=1)96C2.1(C2^3.12D6)192,504
C2.2(C23.12D6) = C4.(D6⋊C4)central extension (φ=1)192C2.2(C2^3.12D6)192,532
C2.3(C23.12D6) = (C4×Dic3)⋊9C4central extension (φ=1)192C2.3(C2^3.12D6)192,536
C2.4(C23.12D6) = C24.30D6central extension (φ=1)96C2.4(C2^3.12D6)192,780
C2.5(C23.12D6) = C232Dic6central stem extension (φ=1)96C2.5(C2^3.12D6)192,506
C2.6(C23.12D6) = C24.21D6central stem extension (φ=1)96C2.6(C2^3.12D6)192,512
C2.7(C23.12D6) = (C2×C12).288D4central stem extension (φ=1)192C2.7(C2^3.12D6)192,544
C2.8(C23.12D6) = C42.62D6central stem extension (φ=1)96C2.8(C2^3.12D6)192,614
C2.9(C23.12D6) = C42.213D6central stem extension (φ=1)96C2.9(C2^3.12D6)192,615
C2.10(C23.12D6) = C12.16D8central stem extension (φ=1)96C2.10(C2^3.12D6)192,629
C2.11(C23.12D6) = C42.72D6central stem extension (φ=1)96C2.11(C2^3.12D6)192,630
C2.12(C23.12D6) = C12.9Q16central stem extension (φ=1)192C2.12(C2^3.12D6)192,638
C2.13(C23.12D6) = C42.77D6central stem extension (φ=1)192C2.13(C2^3.12D6)192,641
C2.14(C23.12D6) = C24.31D6central stem extension (φ=1)96C2.14(C2^3.12D6)192,781

׿
×
𝔽